The Pyrophosphate $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$: A Cage Structure

M. GABELICA-ROBERT
Université de Liège, Département de Chimie Générale et Chimie Physique, Sart Tilman, B-4000 Liège I, Belgium

and M. GOREAUD, Ph. LABBE, and B. RAVEAU
Université de Caen, Laboratoire de Cristallographie et Chimie du Solide associé au CNRS n n° 251, ISMRA, 14032 Caen Cedex, France

Received April 12, 1982; in revised form June 21, 1982

Abstract

The high-temperature form of $\mathrm{NaFe}_{2} \mathrm{O}_{7}$ crystallizes in the monoclinic $P 2_{1} / c$ space group with $a=$ $7.3244(13), b=7.9045(7), c=9.5745(15) \AA, \beta=111.858(13)^{\circ}$, and $Z=4$. The structure has been refined from 3842 reflections leading to $R=0.040$ and $R_{\mathrm{w}}=0.047$. The structure of II- $\mathrm{NaFe}_{2} \mathrm{O}_{7}$ can be described by altemately stacking layers containing the FeO_{6} octahedra and layers formed by the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups, parallel to (001). Elongated cages are formed where two Na^{+}ions are located. The structure is compared with that of $\mathrm{KAlP}_{2} \mathrm{O}_{7}$. Both structures are built up from blocks of three polyhedra, $\left[\mathrm{FeP}_{2} \mathrm{O}_{11}\right\rfloor$ or $\left[\mathrm{AlP}_{2} \mathrm{O}_{11}\right]$, including a small $\mathrm{O}_{\text {oct }}-\mathrm{O}_{\text {tet }}-\mathrm{O}_{\text {oct }}$ angle. These blocks are connected in such a way that several types of tunnels appear in each structure.

Introduction

The adaptability of PO_{4} tetrahedra and $\mathrm{P}_{2} \mathrm{O}_{7}$ groups to a framework built up of WO_{6} octahcdra has been recently discussed (1-4). In this respect, the phosphates $A M \mathrm{P}_{2} \mathrm{O}_{7}(A=\mathrm{Na}, \mathrm{K} ; M=\mathrm{Fe}, \mathrm{Al})$ could be interesting, owing to the presence of metallic elements such as Fe or Al , which can exhibit an octahedral environment and are present in smaller amounts than phosphorus. $\mathrm{NaFe}_{2} \mathrm{O}_{7}$ has been isolated by $\mathrm{Ga}-$ mondes et al. (5); at 1023 K , this compound undergoes an irreversible phase transition from a low-temperature form (called I) to a high-temperature one (called II). The X-ray powder patterns pointed out that I-Na $\mathrm{FeP}_{2} \mathrm{O}_{7}$ was isostructural with $\mathrm{KAlP}_{2} \mathrm{O}_{7}$ and $\mathrm{KFeP}_{2} \mathrm{O}_{7}$, whereas II- $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$ was iso-
structural with $\mathrm{NaAlP}_{2} \mathrm{O}_{7}$ (6). More recently, it has been shown that this family is much more extended (7). In the first group, the structure of $\mathrm{KAlP}_{2} \mathrm{O}_{7}$ has been studied by Nam Ng and Calvo (8), but nothing is known about the structure of the second group, if we except the fact that Gamondes et al. proposed the structure of $\mathrm{II}-\mathrm{Na}$ $\mathrm{FeP}_{2} \mathrm{O}_{7}$ and $\mathrm{NaAlP}_{2} \mathrm{O}_{7}$ was related to that of the previously investigated $\alpha \mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (9). Thus the present paper deals with the structure of $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$-phase II, which represents the second series of compounds.

Experimental

Crystals of II- $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$ were prepared by heating a mixture of 38.30% (mole) $\mathrm{NaHCO}_{3}, 10.64 \% \quad \mathrm{Fe}_{2} \mathrm{O}_{3}$, and 51.06%
$\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$, corresponding to 1 mole Na $\mathrm{FeP}_{2} \mathrm{O}_{7}$ and 0.2 mole $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$. The mixture was slowly heated to 1173 K in a Pt crucible and then melted at 1373 K for 1 hr : after melting, it was cooled at a rate of $10 \mathrm{~K} / \mathrm{hr}$ to 1173 K and quenched at room temperature. Clear and pink crystals of $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$ were obtained in a matrix of a dark-yellow vitreous phase; the crystals were separated from the glass by washing in hot water.

The crystal selected for the structure determination was an optically transparent plate, limited by the $\{100\},\{010\}$, and $\{001\}$ forms with the dimensions $190 \times 70 \times 700$ $\mu \mathrm{m}$. The Laue patterns showed a monoclinic symmetry and the cell parameters, measured on precession and Weissenberg films, were confirmed later by diffractometric techniques, with a least-squares refinement based on 25 reflections: $a=$ 7.3244(13), $b=7.9045(7), c=9.5745(15) \AA$, $\beta=111.858(13)^{\circ}$. These parameters are very similar to those given by Gamondes et al. (6) and the systematic absences ($0 k 0, k$ $=2 n+1$, and $h 0 l, l=2 n+1)$ confirmed the $P 2_{1} / c$ space group.

The data were collected on a CAD-4 Enraf-Nonius diffractometer at 294 K with

TABLE I
Positional Parameters with esd's for $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$

$$
\left(B_{e q}=\frac{4}{3} \Sigma_{i} \Sigma_{j} \beta_{i j} a_{i} a_{j}\right)
$$

Atom	x	y	z	$B_{\text {eq }}$
Na	$0.28768(18)$	$0.47768(18)$	$0.29340(15)$	$1.58(2)$
Fe	$0.25959(3)$	$0.00883(3)$	$0.24937(3)$	$0.28(1)$
$\mathrm{P}(1)$	$0.07355(6)$	$0.25412(5)$	$0.45559(4)$	$0.25(1)$
$\mathrm{P}(2)$	$0.67295(6)$	$0.21144(5)$	$0.45472(5)$	$0.28(1)$
$\mathrm{O}(1)$	$0.87705(18)$	$0.15348(17)$	$0.44124(16)$	$0.52(2)$
$\mathrm{O}(2)$	$0.18938(21)$	$0.28450(17)$	$0.62093(14)$	$0.61(2)$
$\mathrm{O}(3)$	$0.01146(18)$	$0.41546(16)$	$0.36353(15)$	$0.48(2)$
$\mathrm{O}(4)$	$0.18136(22)$	$0.13467(19)$	$0.39169(16)$	$0.67(2)$
$\mathrm{O}(5)$	$0.53313(19)$	$0.08587(18)$	$0.35008(15)$	$0.58(2)$
$\mathrm{O}(6)$	$0.69212(21)$	$0.20154(17)$	$0.61750(14)$	$0.54(2)$
$\mathrm{O}(7)$	$0.63560(19)$	$0.39363(16)$	$0.39793(15)$	$0.51(2)$

Mo $K \alpha$ monochromatized radiation ($\lambda=$ $0.7107 \AA$). The intensities were measured up to $2 \theta=90^{\circ}$ by the $\omega-2 \theta$ technique with a maximum scan width of 1.28° and a counter slit aperture of 2 mm . The background intensity was measured on both sides of each reflection. A periodic control verified the stability of the sample. Among the 3884 measured reflections, only 3853 which had $\sigma(I) / I \leq 0.333$ were corrected for Lorentz and polarization effects, then for absorption with a program based on the crystal

TABLE II
$\mathrm{NaFe}_{2} \mathrm{O}_{7}$: Anisotropic Thermal Parameters

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Na	$0.01897(47)$	$0.02535(51)$	$0.02517(56)$	$0.00226(38)$	$0.01272(43)$	$0.01093(42)$
Fe	$0.00454(8)$	$0.00411(6)$	$0.00334(5)$	$-0.00020(6)$	$0.00185(7)$	$-0.00038(8)$
$\mathrm{P}(1)$	$0.00389(14)$	$0.00399(13)$	$0.00288(14)$	$0.00032(12)$	$0.00163(11)$	$-0.00031(12)$
$\mathrm{P}(2)$	$0.00405(14)$	$0.00437(13)$	$0.00320(14)$	$-0.00041(9)$	$0.00146(11)$	$0.00061(11)$
$\mathrm{O}(1)$	$0.00446(41)$	$0.00620(38)$	$0.01221(51)$	$-0.00020(31)$	$0.00419(39)$	$0.00100(35)$
$\mathrm{O}(2)$	$0.01294(52)$	$0.00643(38)$	$0.00413(42)$	$0.00023(34)$	$0.00028(38)$	$-0.00188(35)$
$\mathrm{O}(3)$	$0.00606(41)$	$0.00608(38)$	$0.00752(47)$	$0.00108(32)$	$0.00178(36)$	$0.00322(35)$
$\mathrm{O}(4)$	$0.01294(52)$	$0.00953(44)$	$0.00896(47)$	$0.00375(38)$	$0.00806(43)$	$-0.00119(38)$
$\mathrm{O}(5)$	$0.00530(41)$	$0.00918(41)$	$0.00864(47)$	$-0.00326(35)$	$0.00153(36)$	$-0.00330(38)$
$\mathrm{O}(6)$	$0.01291(49)$	$0.00665(38)$	$0.00390(42)$	$0.00064(35)$	$0.00398(39)$	$0.00153(31)$
$\mathrm{O}(7)$	$0.00932(47)$	$0.00541(38)$	$0.00864(47)$	$0.00185(32)$	$0.00554(39)$	$0.00337(34)$

Note. These values were obtained from $U_{i j}=\frac{1}{2 \pi^{2}} \beta_{i j} a_{i} a_{j}$, where $\beta_{i j}$ appear through $\exp \left(-\beta_{i j} h_{i} h_{j}\right)$ and a_{i} are the modulus of the direct lattice vectors.
morphology. ${ }^{1}$ The linear absorption coefficient was $36.92 \mathrm{~cm}^{-1}$ and the minimum and maximum transmission factors were 0.456 and 0.771 .

The structure was determined from Patterson function and subsequent difference synthesis. The atomic parameters were refined by full-matrix least squares. Scatter-

Fig. 1. $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$: Projection of the structure along [001].

[^0]ing factors for $\mathrm{Fe}^{3+}, \mathrm{Na}^{+}$, and P were from Cromer and Waber (10), corrected for anomalous dispersion (11), and for O^{2-} from Suzuki (12). A linear weighting scheme was adjusted according to $\langle w| F_{0} \mid-$ $\left.\left|F_{c}\right|\right\rangle$ in terms of $\sin \theta / \lambda$. For 11 intense reflections, the calculated structure factor was larger than the observed value, probably due to the secondary extinction; they were eliminated in the final refinement. The refinement with anisotropic thermal coefficients for each atom led to
$$
R=\Sigma| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{0}\right|=0.040
$$
and
$$
\boldsymbol{R}_{\mathrm{w}}=\left[\Sigma w\left(\left|\boldsymbol{F}_{0}\right|-\mid \boldsymbol{F}_{\mathrm{c}}\right)^{2} / \Sigma w\left|\boldsymbol{F}_{0}\right|^{2}\right]^{1 / 2}=0.047
$$

The final atomic and anisotropic thermal parameters are listed in Tables I and II, respectively, and Fig. 1 shows the projection of the structure along the \mathbf{c} axis. All the atoms are in general position.

Description of the Structure and Discussion

The pyrophosphate $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$ can be described as a cage structure whose host lattice " $\mathrm{FeP}_{2} \mathrm{O}_{7}$ " is built up from corner-sharing octahedra and $\mathrm{P}_{2} \mathrm{O}_{7}$ groups (Fig. 2). The pyro group is formed from two slightly dis-

Fig. 2. $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$: Octahedral and tetrahedral layers drawn from the projection onto (100). "A" designates a rhombic tunnel.

TABLE III
Geometry of the $\mathrm{P}_{2} \mathrm{O}_{7}$ Groups and Environment of Fe^{3+} and Na^{+}in $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$

Bond	Distance (\AA)	Bond	Angle $\left({ }^{\circ}\right)$
$\mathbf{P}(1)-\mathrm{P}(2)$	$2.590(1)$	$\mathrm{P}(1)-\mathrm{O}(1)-\mathrm{P}(2)$	$132.86(9)$
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.605(1)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	$107.72(8)$
$\mathrm{P}(1)-\mathrm{O}(2)$	$1.511(1)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(3)$	$107.52(8)$
$\mathrm{P}(1)-\mathrm{O}(3)$	$1.520(1)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(4)$	$104.16(8)$
$\mathrm{P}(1)-\mathrm{O}(4)$	$1.500(2)$	$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(3)$	$113.83(8)$
		$\mathrm{O}(2)-\mathrm{P}(1)-\mathrm{O}(4)$	$110.60(8)$
$\mathrm{P}(2)-\mathrm{O}(1)$	$1.614(2)$	$\mathrm{O}(3)-\mathrm{P}(1)-\mathrm{O}(4)$	$112.39(8)$
$\mathrm{P}(2)-\mathrm{O}(5)$	$1.508(1)$		
$\mathrm{P}(2)-\mathrm{O}(6)$	$1.514(2)$	$\mathrm{O}(1)-\mathrm{P}(2)-\mathrm{O}(5)$	$100.38(8)$
$\mathrm{P}(2)-\mathrm{O}(7)$	$1.528(1)$	$\mathrm{O}(1)-\mathrm{P}(2)-\mathrm{O}(6)$	$109.51(8)$
		$\mathrm{O}(1)-\mathrm{P}(2)-\mathrm{O}(7)$	$106.71(8)$
		$\mathrm{O}(5)-\mathrm{P}(2)-\mathrm{O}(6)$	$115.45(8)$
		$\mathrm{O}(5)-\mathrm{P}(2)-\mathrm{O}(7)$	$113.37(8)$
		$\mathrm{O}(6)-\mathrm{P}(2)-\mathrm{O}(7)$	$110.54(8)$

FeO_{6} octahedron

$\mathrm{Fe}-\mathrm{O}(2)$	$1.994(1)$	$\mathrm{Na}-\mathrm{O}(1)$	$2.533(2)$
$\mathrm{Fe}-\mathrm{O}(3)$	$2.014(1)$	$\mathrm{Na}-\mathrm{O}(2)$	$2.580(2)$
$\mathrm{Fe}-\mathrm{O}(4)$	$1.938(2)$	$\mathrm{Na}-\mathrm{O}(3)$	$2.408(2)$
$\mathrm{Fe}-\mathrm{O}(5)$	$1.969(1)$	$\mathrm{Na}-\mathrm{O}(5)$	$2.384(2)$
$\mathrm{Fe}-\mathrm{O}(6)$	$2.044(1)$	$\mathrm{Na}-\mathrm{O}(6)$	$2.662(2)$
$\mathrm{Fe}-\mathrm{O}(7)$	$2.053(2)$	$\mathrm{Na}-\mathrm{O}(7)$	$2.457(2)$
		$\mathrm{Na}-\mathrm{O}(4)$	$3.064(2)$
		$\mathrm{Na}-\mathrm{O}(7)$	$2.975(2)$

Note. The calculation of the standard deviations does not take the thermal motion corrections into account.
torted PO_{4} groups having one common oxygen. The PO_{3} terminal groups are in a nearly eclipsed configuration; for instance, the dihedral angle between the $O(3)-$ $\mathrm{P}(1)-\mathrm{P}(2)$ and $\mathrm{O}(7)-\mathrm{P}(2)-\mathrm{P}(1)$ planes is about 12°. The bond lengths and angles are given in Table III. The bridge bonds are slightly longer than the average terminal bonds (1.510 and $1.517 \AA$ for the $\mathrm{P}(1)$ and $\mathrm{P}(2)$ atoms, respectively); they are similar to those observed in other pyrophosphates (8). The $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridge angle is larger than the 123° valuc found in $\mathrm{KAlP}_{2} \mathrm{O}_{7}$ (8). Each PO_{4} tetrahedron shares its corners with
three octahedra and one tetrahedron, while a FeO_{6} octahedron shares all its apices with PO_{4} tetrahedra. The FeO_{6} octahedra are nearly regular, with $\mathrm{O}-\mathrm{Fe}-\mathrm{O}$ angles between 84.32 and 94.30° (Table III). All the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups have a lengthening direction parallel to \mathbf{a}. The arrangement of the polyhedra allows us to distinguish two sorts of laycrs parallel to (001): the octahedral layers with the composition FeO_{3} and the tetrahedral layers with the composition $\mathrm{P}_{2} \mathrm{O}_{4}$ (Figs. 2 and 3). These layers are alternately stacked along \mathbf{c} in such a way that every $\mathrm{P}_{2} \mathrm{O}_{7}$ group shares four corners with one octahedral layer, and the two other corners with the other octahedral layer. This framework forms small rhombic tunnels running along a, which are labeled as A in Fig. 2. An octahedral layer is connected with the adjacent tetrahedral layer in such a manner that a $\mathrm{P}_{2} \mathrm{O}_{7}$ group shares two of its corners with the same octahedron. This results in blocks of three polyhedra $\left[\mathrm{FeP}_{2} \mathrm{O}_{11}\right]$ (Fig. 4), which can be used as structural units for describing the structure of this compound. In this

Fig. 3. Relative arrangement of the FeO_{6} octahedra and $\mathrm{P}_{2} \mathrm{O}_{7}$ groups in $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$. The "aeschynite"-type windows (B) are bounded by dotted lines.

Fig. 4. $\mathrm{NaFe} \mathrm{P}_{2} \mathrm{O}_{7}$: Layer parallel to (001) built up from the $\left[\mathrm{FeP}_{2} \mathrm{O}_{11}\right]$ units. The $\mathrm{P}_{2} \mathrm{O}_{7}$ groups in dotted lines lie below the mean plane of the layer.
case, new layers parallel to (001) are built up from such structural units which share their corners, as shown in Fig. 4.

This framework delimits elongated cages where the Na^{+}ions are located; these cages are bounded by four pyrophosphate groups, eight octahedra, and four tetrahedra; it results in two sorts of windows: very distorted pentagonal windows and four-angled windows whose shape is similar to that of
the tunnels observed in diaspore and in aeschynite (13). The former, which are built up from one $\mathrm{P}_{2} \mathrm{O}_{7}$ group, two octahedra, and one tetrahedron, form small distorted pentagonal tunnels running along [$\overline{1} 10]$; the latter are not only formed from octahedra, contrary to aeschynite or diaspore, but are built up from two $\mathrm{P}_{2} \mathrm{O}_{7}$ groups and two octahedra, as shown in Fig. 3, and form small tunnels running along the [001] direction. Each cage encloses two Na^{+}ions which are bound to six oxygen atoms (Table III), forming a very distorted octahedron (Fig. 5). The second neighbors for Na are two oxygen atoms at 2.975 and $3.064 \AA$ (Fig. 5b, Table III). The others lie beyond $3.45 \AA$ from the Na atom.

These results point out that the structure of this compound cannot be derived from that of $\alpha \mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, contrary to the proposition of Gamondes et al. (6).

On the other hand, a comparison can be made with the structure of the homologous potassium pyrophosphate $\mathrm{KAlP}_{2} \mathrm{O}_{7}$, which is also built up from corner-sharing octahedra and pyrophosphate groups (8). The " $\mathrm{AlP}_{2} \mathrm{O}_{7}$ " framework of this phase can also be described by the association of $\left[\mathrm{AlP}_{2} \mathrm{O}_{11}\right]$ units formed of one $\mathrm{P}_{2} \mathrm{O}_{7}$ group and one octahedron, which are shown in Fig. 6. However, the configuration of the pyrophos-

(a)

(b)

Fig. 5. $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$: Representation of (a) the distorted NaO_{6} octahedron and (b) the Na^{+}environment, drawn from a projection along [001]. The oxygen atoms are labeled as in Table I.

Fig. 6. $\mathrm{KAIP}_{2} \mathrm{O}_{7}$: Projection onto (001) showing the [$\mathrm{AlP}_{2} \mathrm{O}_{11}$] units and the tunnels running along c .
phate groups is staggered in the potassium compound while it is eclipsed in the case of sodium, as one can see by the comparison of Figs. 4 and 6. In both structures, the FeO_{6} or AlO_{6} octahedra, as well as the PO_{4} tetrahedra, remain almost regular. The configuration of the $\mathrm{P}_{2} \mathrm{O}_{7}$ group is worthy of note in both compounds: $\mathrm{O}_{\text {oct }}-\mathrm{O}_{\mathrm{tet}}-\mathrm{O}_{\text {oct }}$ angles of 64 and 70° are indeed observed in $\mathrm{KAlP}_{2} \mathrm{O}_{7}$ and $\mathrm{NaFeP}_{2} \mathrm{O}_{7}$, respectively (Figs. 3 and 6). To our knowledge, such a small angle has never been observed in other pyrophosphates containing cornersharing $\mathrm{P}_{2} \mathrm{O}_{7}$ and octahedral groups: bivalent pyrophosphates, such as $\alpha \mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (9), $\alpha \mathrm{Co}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (14), and $\alpha \mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (15), exhibit minimum $\mathrm{O}_{\mathrm{oct}}-\mathrm{O}_{\mathrm{tet}}-\mathrm{O}_{\text {oct }}$ angles ranging from 88.2 to 101.4° and $\mathrm{P}_{2} \mathrm{O}_{7}$ groups belonging to structures such as the bronzes $A_{x} \mathrm{P}_{8} \mathrm{~W}_{8 n} \mathrm{O}_{24 n+16}(1,2)$ and $\mathrm{P}_{8} \mathrm{~W}_{18} \mathrm{O}_{52}(4)$, in which the octahedra are more numerous, are also characterized by greater angles, ranging from 84.4 to 88.5°. Small $\mathrm{O}_{\mathrm{pol}}-\mathrm{O}_{\mathrm{tet}}-\mathrm{O}_{\mathrm{pol}}$ (pol for polyhedron) are also observed in pyrophosphates, such as, for instance, $\alpha \mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}\left(75.4^{\circ}\right)$ and $\beta \mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$ (76.6 and 78.7°), where the cation has seven, eight, or nine neighbors (16, 17). In all these cases, the existence of a small $\mathrm{O}_{\mathrm{pol}}-\mathrm{O}_{\mathrm{tet}}-\mathrm{O}_{\mathrm{pol}}$ angle is due to the double
connection of the $\mathrm{P}_{2} \mathrm{O}_{7}$ group with the same octahedron ($\mathrm{NaFeP}_{2} \mathrm{O}_{7}-\mathrm{KAlP}_{2} \mathrm{O}_{7}$) or polyhedron (α and $\beta \mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$). In $\mathrm{KAlP}_{2} \mathrm{O}_{7}$ and $\mathrm{NaFe} \mathrm{P}_{2} \mathrm{O}_{7}$, this confirms the great adaptability of the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups to the octahedra without involving any distortion of the polyhedra. The adaptability of the $\mathrm{P}_{2} \mathrm{O}_{7}$ group to the octahedra is perhaps more striking for $\mathrm{KAlP}_{2} \mathrm{O}_{7}$ in that the "height" of a $\mathrm{P}_{2} \mathrm{O}_{7}$ group corresponds exactly to that of an octahcdron, forming corner-sharing files of polyhedra similar to those obtained in octahedral structures, one $\mathrm{P}_{2} \mathrm{O}_{7}$ group alternating with one octahedron (Fig. 7). It results that the $\left[\mathrm{AlP}_{2} \mathrm{O}_{7}\right]$ host lattice of the potassium pyrophosphate, like that of Na $\mathrm{FeP}_{2} \mathrm{O}_{7}$, forms cages resulting from intersecting tunnels where the K^{+}ions are located. The so-formed tunnels are, however, much wider than those observed for Na $\mathrm{FeP}_{2} \mathrm{O}_{7}$ and exhibit sizes close to those of hexagonal and tetragonal tungsten bronzes $(18,19)$. Two sorts of tunnels are indeed observed: very wide tunnels running along the [001] direction and distorted hexagonal

Fig. 7. Representation of a double file of AlO_{6} octahedra and $\mathrm{P}_{2} \mathrm{O}_{7}$ groups obtained by a projection along a in $\mathrm{KAlP}_{2} \mathrm{O}_{7}$.
tunnels running along the [110] direction, formed by two types of alternating windows. The former, which correspond to four corner-sharing [$\left.\mathrm{AlP}_{2} \mathrm{O}_{11}\right]$-unit crowns (Fig. 6), exhibit a mean radius of $2.77 \AA$, close to that observed in hexagonal tungsten bronzes or in pyrochlore (about $2.7 \AA$) and a minimum distance between opposite oxygen atoms of $4.68 \AA$; the latter, which are formed of crowns built up of two $\mathrm{P}_{2} \mathrm{O}_{7}$ groups and two octahedra, have a shape similar to that of pyrochlore but are smaller than in pyrochlore: the minimum distance between opposite oxygens are 3.49 and 3.67 \AA for the two types of windows. Thus it appears that $\mathrm{KAlP}_{2} \mathrm{O}_{7}$, which is characterized by rather large intersecting tunnels contrary to $\mathrm{NaFe}_{2} \mathrm{O}_{7}$, could be able to exhibit some mobility of the inserted cation K^{+}.

Conclusion

The structures of these pyrophosphates show the great adaptability of the $\mathrm{P}_{2} \mathrm{O}_{7}$ groups to the octahedra, in spite of the relatively great number of PO_{4} tetrahedra ($\mathrm{P} /$ $\mathrm{Fe}(\mathrm{Al})=2$). The presence of tunnels and cages lets an analogy appear with the bronzes $A_{x} \mathrm{P}_{8} \mathrm{~W}_{12} \mathrm{O}_{24 n+16}(1,2)$ and $\mathrm{P}_{8} \mathrm{~W}_{8}$ $\mathrm{O}_{24 n+16}(4)$ in which the octahedra are much more numerous. These results let us consider the possibility of existence of intermediate phases involving the connection of
PO_{4} tetrahedra with WO_{6} and AlO_{6} (or FeO_{6}) octahedra simultaneously.

References

1. J. P. Giroult, M. Goreaud, Ph. Labbé, and B. Raveau, Acta Crystallogr. Sect. B 36, 2570 (1980).
2. J. P. Giroult, M. Goreaud, Ph. Labbe, and B. Raveau, Acta Crystallogr. Sect. B 37, 1163 (1981).
3. J. P. Giroult, M. Goreaud, Ph. Labbé, and B. Raveau, Acta Crystallogr. Sect. B 37, 2139 (1981).
4. B. Domenges, M. Goreaud, Ph. Labbe, and B. Raveau, Acta Crystallogr. Sect. B 38, 724 (1982).
5. J. P. Gamondes, F. D'Yvoire, and A. Boulle, C.R. Acad. Sci. Paris Ser. C 269, 1532 (1969).
6. J. P. Gamondes, F. D'Yvoire, and A. Boulle, C.R. Acad. Sci. Paris Ser. C 272, 49 (1971).
7. M. Gabelica-Robert and P. Tarte, "Proceedings, Second European Conference on Solid State Chemistry, Eindhoven, Netherlands, 7-9 June 1982."
8. H. Nam Ng and C. Calvo, Canad. J. Chem. 51, 2613 (1973).
9. B. E. Robertson and C. Calvo, Acta Crystallogr. 22, 665 (1967).
10. D. T. Cromer and J. T. Waber, Acta Crystallogr. 18, 104 (1965).
11. D. T. Cromer, Acta Crystallogr. 18, 17 (1965).
12. T. Suzuki, Acta Crystallogr. 13, 279 (1960).
13. A. F. Wells, "Structural Inorganic Chemistry," 4th ed., pp. 182, 526, Oxford Univ. Press, London/New York (1975).
14. N. Krishnamachari and C. Calvo, Acta Crystallogr. Sect B 28, 2883 (1972).
15. C. Calvo, Acta Crystallogr. 23, 289 (1967).
16. C. Calvo, Inorg. Chem. 7, 1345 (1968).
17. N. C. Webs, Acta Crystallogr. 21, 942 (1966).
18. A. Magnéli, Acta Chem. Scand. 7, 315 (1953).
19. A. Magnéli, Ark. Kemi 1, 213 (1949).

[^0]: ${ }^{1}$ See NAPS document No. 03985 for 23 pages of supplementary material. Order from ASIS/NAPS, Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance $\$ 4.00$ for microfiche copy or for photocopy, $\$ 7.75$ up to 20 pages plus $\$.30$ for each additional page. All orders must be prepaid. Institutions and Organizations may order by purchase order. However, there is is a billing and handling charge for this service of $\$ 15$. Foreign orders add $\$ 4.50$ for postage and handling, for the first 20 pages, and $\$ 1.00$ for additional 10 pages of material. $\$ 1.50$ for postage of any microfiche orders.

